

Mark Scheme (Results)

June 2011

GCE Statistics S3 (6691) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028846
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Statistics S3 6691 Mark Scheme

	Mark Scheme	1
Question Number	Scheme	Marks
1.	X_1, X_2, X_n is a random sample of size n , for large n ,	B1
	drawn from a population of any distribution with mean μ and variance σ^2	B1
	then \overline{X} is (approximately) $N\left(\mu, \frac{\sigma^2}{n}\right)$	B1
		(3) 3
	1 st B for large sample or equivalent 2 nd B for 'population of any distribution' or 'any population' 3 rd B require mean or symbol and normal (parameters not required)	

Question Number		Scheme					Marl	ks			
2. (a)	Town $ \begin{array}{c} h \text{ rank} \\ c \text{ rank} \\ d \\ d^2 \end{array} $ $ \sum d^2 = 28$ $ r_s = 1 \\ = 0$	$ \begin{array}{c c} A \\ \hline 1 \\ 4 \\ 3 \\ 9 \\ \hline 6 \times 28 \\ 7 \times 48 \\ .5 \end{array} $	B 5 3 2 4	C 2 2 0 0 0	D 3 1 2 4	E 7 6 1 1	F 4 7 3 9	G 6 5 1		M1 M1 M1A1 M1	
(b)	$H_0: \rho = 0, 1$ Critical value $0.5 < 0.7857$ Councillor	ues are insuffic	$r_s = \pm 0.7$ ient evid	dence to	reject H					B1 B1ft M1 A1ft	(4) 10

Number	Scheme	Marks
Notes (a)	1 st M1 for an attempt to rank the hardship against calls	
	2^{nd} M1 for attempting d for their ranks. Must be using ranks. 3^{rd} M1 for attempting $\sum d^2$ (must be using ranks)	
	1 st A1 for sum of 28 (or 84) 4 th M1 for use of the correct formula with their $\sum d^2$. If answer is not	
	correct an expression is required. 2 nd A1 for awrt 0.5 (or -0.5)	
(b)	1 st B1 for both hypotheses in terms of ρ , H ₁ must be two tail.	
	2^{nd} B1 for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H ₁)	
	M1 for a correct statement relating their r_s with their cv but cv must	
	be such that cv <1	
	A1ft for a correct contextualised comment. Must mention "Councillor" and "claim" or "hardship" and "number of calls (to the emergency services)"	
	Follow through their r_s and their cv (provided it is $ cv < 1$	
	Condone use of "association" in conclusion for A1 Condone 'positive' in conclusion.	

uestion lumber	Scheme						
umber							
	Defect Type Shift	D_1	D_2				
	First Shift	47.25	15.75	63			
	Second Shift	56.25	18.75	75			
	Third Shift	46.5	15.5	62	1		
		150	50	200	1	M1A1	
	H ₁ : Type of defect is no	ot independe	ent of Shift (asso	ociation)		B1	
	0	E	$\frac{(O-E)^2}{E}$	$\frac{{O_i}^2}{E_i}$			
			\boldsymbol{E}	F			
	45	47.25					
	45	47.25	0.1071	42.857			
	18	15.75	0.1071 0.3214	42.857 20.571			
	18 55	15.75 56.25	0.1071 0.3214 0.02777	42.857 20.571 53.777			
	18 55 20	15.75 56.25 18.75	0.1071 0.3214 0.02777 0.0833	42.857 20.571 53.777 21.333			
	18 55	15.75 56.25	0.1071 0.3214 0.02777	42.857 20.571 53.777		M1A1	
	18 55 20 50 12	15.75 56.25 18.75 46.5 15.5	0.1071 0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	M1A1 A1	
	18 55 20 50	15.75 56.25 18.75 46.5 15.5	0.1071 0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59		
	$ \begin{array}{c c} 18 \\ 55 \\ 20 \\ 50 \\ 12 \end{array} $ $ \frac{(O-E)^2}{E} = 1.5934 \text{ or } \frac{C}{E} = 1.5934 \text{ or }$	15.75 56.25 18.75 46.5 15.5	0.1071 0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1	
	$ \begin{array}{c c} 18 \\ 55 \\ 20 \\ 50 \\ 12 \end{array} $ $ \frac{(O-E)^2}{E} = 1.5934 \text{ or } \frac{C}{E} $ $ v = (3-1)(2-1) = 2 $ $ \chi_2^2(0.10) = 4.605 $	$ \begin{array}{r} 15.75 \\ \hline 56.25 \\ \hline 18.75 \\ \hline 46.5 \\ \hline 15.5 \\ \hline 2i \\ \hline -200 = 201. \end{array} $	0.1071 0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1 B1 B1ft	
	$ \begin{array}{c c} 18 \\ 55 \\ 20 \\ 50 \\ 12 \end{array} $ $ \frac{(O-E)^2}{E} = 1.5934 \text{ or } \frac{C}{E} = 1.5934 \text{ or }$	$ \begin{array}{r} 15.75 \\ \hline 56.25 \\ \hline 18.75 \\ \hline 46.5 \\ \hline 15.5 \\ \hline 2i^2 -200 = 201. \end{array} $ ent evidence	0.1071 0.3214 0.02777 0.0833 0.2634 0.7903 0.5934-200=1.593	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1 B1	

Question Number	Scheme	Marks
Notes	1^{st} M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$ May be implied by correct	
	E_i	
	1 st A1 for all expected frequencies correct	
	B1 for both hypotheses. Must mention "defect" and "shift" at least once	
	Use of "relationship" or "correlation" or "connection" is B0	
	2 nd M1 for at least two correct terms (as in 3 rd or 4 th column) or correct	
	expressions with their E_i	
	2 nd A1 for all correct terms. May be implied by a correct answer.(2 dp or	
	better-allow eg 0.10)	
	3 rd M1 for a correct statement linking their test statistic and their cv.	
	Must be χ^2 not normal.	
	4 th A1 for a correct comment in context - must mention "manager's	
	belief" or "shift" and "defect type" - condone "relationship" or "connection"	
	here but not "correlation". No follow through e.g. "There is evidence of a	
	relationship between shift and type of defect"	

Question Number	Scheme	Marks
4.		
(a)	$\overline{x} = \frac{5320}{80} = 66.5$	M1,A1
	$s^2 = \frac{392000 - 80 \times (66.5)^2}{79}$	M1A1ft
	= 483.797 awrt 484	A1
		(5)
(b)	H_0 : $\mu_m = \mu_{nm}$, H_1 : $\mu_m > \mu_{nm}$ (accept μ_1, μ_2 with definition)	B1B1
	$z = \frac{69.0 - 66.5}{\sqrt{\frac{483.797}{80} + \frac{446.44}{60}}}$	M1dM1
	= 0.6807 awrt 0.681	A1
	One tailed cv 1.6449 (Probability is awrt 0.752)	B1
	0.6807 < 1.6449 (or $0.248 > 0.05$) insufficient evidence to reject H ₀	dM1
	Mean money spent is not greater with music playing.	A1ft
		(8) 13

Question	Scheme	Marks
Number	Notes	
(b)	No definition award B1B0.	
(D)	1 st M1 for attempt at s.e condone one number wrong or switched 60 &	
	80.	
	2^{nd} dM1 for using their s.e. in correct formula for test statistic.	
	3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv	
	and their test statistic	
	2 nd A1 for correct comment in context. Must mention "money spent" and	
	"music playing". Allow ft.	
	Critical Region for (b)	
	Standard error x z value for 2 nd M1	
	Standard error x 1.6449= awrt 6.04 for 1 st A1	
	2.5<6.04	

Question Number	Scheme								Mark	(S
5. (a)	Hurricanes: occur singly / are independent or occur at random /are a rare event / at a constant rate							B1B1	(2)	
(b)	From data	From data $\frac{1 \times 2 + 2 \times 5 + 3 \times 17 + + 7 \times 12}{80} = 4.4875$							M1A1	(2)
	No of hurricanes,	0 1	2	3	4	5	6	7+	_	
(c)	$80P\left(X=h\right) 0.$.9 4038	r=9.06	13.55	s=15.205	13.647	10.2 06	13.388	M1A1A	A 1
	Combine to give expected frequencies >5	13.999)]	13.55	15.205	13.647	10.2 06	13.388	-	(3)
	Observed	7		17	20	12	12	12	1	
(d)	$\frac{\left(O-E\right)^2}{E}$	3.499.		0.876	1.511	0.198	0.31 5	0.143	M1	
	$\frac{{O_i}^2}{E_i}$	3.500.		21.322	26.306	10.551	14.1 08	10.755		
	H ₀ : Poisson	distributio	on is not a	a good fit	o.e.				B1	
		$\sum \frac{(O_i - E_i)^2}{E_i} = 6.545 \text{ or } \frac{O_i^2}{E_i} = 86.545-80 = 6.545 \text{ (awrt 6.55 or }$								
		· ·							B1 B1ft	
	6.545<9.48 (Hurricanes	88 so insuf				ution			A1	(6) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	M for at least 2 terms on numerator. 359/80 only award M0A0	
(c)	M for 80xPoisson probability with 4.4875 and either 2 or 4.	
	1st A1 for awrt 9.06 and 2 nd A1 for awrt 15.20 or 15.21	
(d)	1 st M1 for some pooling and attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct	
	expressions or values.	
	1 st B1 no value for parameter permitted	
	2 nd A1 for a correct comment suggesting that Poisson model is suitable.	
	No ft	

Question	Scheme	Marks
Number		
6. (a)	$L = A_1 + A_2 + + A_6$	
	Mean is $E(L) = 6 \times 20 = 120$	B1
	Standard deviation is $\sqrt{\text{Var}(W)} = \sqrt{6 \times 5^2} = 5\sqrt{6} = 12.247$ awrt	B1
	12.2	(2)
(b)	$P(L>110) = P(Z > \left(\frac{110-120}{12.247}\right))$	M1
	= P(Z < 0.8164) = 0.7939 (or 0.7929 using interpolation or 0.79289 by calc)	A1 (2)
(c)	$Let X = 4B - \sum_{i=1}^{6} A_i$	
	E(X) = 140 - 120 = 20	B1
	$Var(X) = 16 \times 8^2 + 6 \times 5^2 = 1174$	M1M1A1
	$P(X < 0) = P(Z < \frac{-20}{\sqrt{1174}}) = P(Z < -0.583)$	M1
	= 0.2797 (or 0.2810 if no interpolation) or 0.27971 by calc.	A1
		(6) 10

Question Number	Scheme	Marks
Number	Notes	
(b)	M1 for identifying a correct probability (they must have the 110) and attempting to standardise with their mean and sd. This can be implied by the correct answer. A1 for awrt 0.794 or 0.793	
(c)	Accept ±20 for B mark. Only award for probability statement if 2 terms in var 1 st M1 for 1024, 2 nd M1 for 150 3 rd M for standardising with their mean and 2 term sd and finding probability <0.5 2 nd A1 for awrt 0.280 or 0.281	

Question Number	Scheme	Mark	S
7. (a)	H ₀ : μ =250, H ₁ : μ <250, $z = \frac{248-250}{\frac{5.4}{\sqrt{90}}}$	B1 M1	
	=-3.513 awrt -	A1	
	3.51 Critical value -1.6449 -3.513<-1.6449 so sufficient evidence to reject H ₀	B1	
	Manager's claim is justified.	A1	
			(5)
(b)	98% CI for μ is		
	$248 \pm 2.3263 \times \frac{5.4}{\sqrt{90}}$	M1B1	
	$= \operatorname{awrt} (247,249) \qquad \qquad \operatorname{dependent upon} z \text{ value awrt}$	A1A1	
	2.33		(4)
(c)	Hypothesis test is significant or CI does not contain stated weight. (Manager should ask the company to investigate if their) stated weight is too high o.e.	B1 B1	
	too mgn c.c.		(2)
(d)	$P(\bar{x} - \mu < 1) = 0.98$ $\frac{1}{\sqrt{n}} = 2.3263$	M1 A1	
	$n = (3 \times 2.3263)^2 = 48.7$	dM1A1	
	Sample size 49 required.	A1	(5)
			(5) 16

Question Number	Scheme	Marks
	Notes	
(a)	1 st B1 for H ₀ and for H ₁ (must be <250) They must use μ not x , p , λ or	
	\bar{x} etc	
	1 st M1 for attempt at standardising using 248, 250 and sd. Can accept ±.	
	Critical region: 250-0.936=249.064 for M1A1 (and compare with 248.)	
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0002 or better)	
	2 nd A1 for a correct contextualised comment. Must mention "Manager"	
	and "claim" or "weight" and "stated weight". No follow through.	
(b)	2.3263 or better for B mark. Any z value replacing 2.3263 award M.	
(d)	1^{st} M for LHS = z value >1	
	1 st A for RHS awrt 2.33	
	2 nd A1 for answers in the range 48.7-48.9	
	3 rd A1 don't condone ≥	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA028846 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

